Documents

Second Course in Calculus

Categories
Published
of 708
All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
Related Documents
Share
Description
idk
Transcript
   A SECOND COCi 1M YA IBS Rob  Constants tt  ~  3.141593   ir/2 « 1.570796   ir/3 « 1.047198   t/4 « 0.785398   x/6 « 0.523599   logio it « 0.497150   1 rad « 57.29578°1° » 0.0174533 rad   e « 2.718282   e2 » 7.389056   1/e « 0.367879   M = logio c « 0.4342945   1/Af = In 10 « 2.302585   logic M ~  0.637784 - 1   logio x = M  In x   V2  « 1.414214   V§ « 1.732051   V5 « 2.236068   30 mph = 44 ft/sec   g « 980.62 cm/sec2« 32.173 ft/sec2 Definite Integrals r2ir r2r  / sin2 nx dx =  / cos2 nx dx = t  (n > 1)    Jo Jo I 0  Jo ã2ir r2w sin mx sin nx dx —  / cos mx cos nx dx = 0    Jo(m n) sin mx cos nx dx = 03. f    sii    Jo r */2/ã? 4.  / sin2n xdx = Jo Jo ri r/2 /*ir/2 5. / sin2n+1 x dx =  / cos2n+1 x dx = Jo Jo   (2n + l)! 6. [ e ~x*dx = ^ Vtt    Jo 2  /2 ^ (2n)! *   cos2n x ax = ~■■ -   22n(n!)222 2n(n!)2 Formulas ax+1/= axav (a&)x = axbx(ax)v = axv   sin 21 + cos2 £= 1   1 + tan2£= sec2 £1 + cot22= csc2 £ 7T  7 r1— = cos - = — 63  2 7T   7 r  1 --  = cos - = — 442 7T  7 r1— = cos - = —362 1 /- sin( — 0 = — sin £cos( — 0 = cos t   sin(x + y)  = sin x cos y  +   cos(x + y)  = cos x cos y — sin 2x = 2 sin x cos x   cos 2x = cos2x — sin2 x   sin2 x = ^(1 — cos 2x)   cos2 x = i(l + cos 2x)   sinh t  = £(e* —e~l)   cosh t = + e“0   cosh2 £— sinh2 £= 1cos x sin 2  /    sin x sin 2  /  Power Series x| < 1 rb'X1' 1 n = 00 X xn— all x   n\n — 0 S X 2n+1  ‘ n *0 00 VA x2ncosz = 2/(-1)n(2^)! allx n =0 OO ln(l + *) = V (-1) -1— \x\ < 1 n n =1 arc tan x ■S' n =0(-1) X2n+1 2n -| 11*1< 1  Differentiation Rules m  I  I   cucuU  + Vu  + i)uvui)  + vuuvu — ui)VV2u[v(t)\ u[»(0]»(0 df . ,df   . = — x H --- y. dx dyy Differentiation Formulas m  £ - /«> ctael a1  In t sin £cos t  tan t  cot t  sec t  csc t arc sin t * arc tan t sinh t  cosh t  tanh t 0 at  “-1 el (In a) a1 1 t cos t  —   sin t   sec 21  —csc2 t   tan t   sec t  —cot t   CSC t 1Vi-11 + 1 2cosh t  sinh t  sech 21 Polar Coordinates { x —r  cos 0 y  = r  sin 0 Spherical CoordinatesIntegrals (constant of integration omitted)1.  J u dv  = uv — Jv du /v-M ; h 4 [ d±  = 1 J a2 — x2 2a  5. / dx  1 (x ——-= - arc tan I - + x2a \a,x  + a   x  — a In(a2+ x2)n  (2 n — 2 )a2(a2 + x2)n_1 2n  — 3 / dx<i-S [ ~  2) a2  J (n > 1)(2n - 2)a2  J  (a2+ x2) -1c f dx . (x\ 6. / —= arc sin 1- J J   Va2- x2W 7.  J y/a2— x2dx  = ^ \/a2— x2+ ~ arc sin8. J Vx2ia2y a/x2± a2 dx = In |x + \/x2± a29.= - Vx2± a2± In |x + \/x2± a2\ (continued inside back cover) Vectorsa ãb = dibi  -f- (I 2&2   I- C& 3&3 a x b =i jk a   1 &2 as 61 62 63 i  j-   dy + k dcte V / = grad / = /,)V ãv = div v = ux   + vy   + w. f x = p sin <t> cos 0 i jks y  = p sin <£sin 0 V X v = curl v = d/dx d/dyd/az i 2 = p COS 0 U  V  w
We Need Your Support
Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us.

Thanks to everyone for your continued support.

No, Thanks